【PHP-FPM】重启过程源码详解

Uchiha_Ponny · · 186 次点击 · · 开始浏览    
这是一个创建于 的文章,其中的信息可能已经有所发展或是发生改变。

一、概要

在工作中,我们经常需要重启PHP-FPM,那么这个重启过程都发生了那些事情呢?让我们从PHP源码中一探究竟吧。

运行环境: Mac 10.14.2 + PHP 7.3.7

二、源码解析

信号在fpm的重启中扮演着重要的角色。那什么是信号呢?

信号是由用户、系统或者进程发送给目标进程的信息,以通知目标进程某个状态的改变或系统异常。Linux信号可由如下条件产生:

  • 对于前台进程,用户可以通过输入特殊的终端字符来给它发送信号。
  • 系统异常。比如浮点异常和非法内存段访问。
  • 系统状态变化。比如 alarm 定时器到期将引起 SIGALARM 信号。
  • 运行 kill 命令或调用 kill 函数

在PHP-FPM中,用户通过kill命令来重启fpm,master进程也是通过kill()函数向worker进程发送信号来结束进程。fpm的重启分为优雅重启(kill -SIGUSR2)和强制重启(kill -SIGTERM)两种,下面是以优雅重启为例,master进程将收到SIGUSR2信号。

master进程信号初始化

master进程信号初始化函数fpm_signals_init_main() 主要做了两件事情:

  1. 创建unix_socket对sp
  2. 注册信号处理函数

创建unix_socket对sp

通过socketpair()来创建这一对双全工的unix_socket,其中sp[0]的可读事件在fpm_event_loop()中被注册到事件队列中,其回调函数为fpm_got_signal(),这样往sp[1]写入数据时将触发sp[0]的可读事件回调。对这俩unix_socket还有两个操作:

  1. 设置fd状态标志为非阻塞: 调用fcntl(fd, F_SETFL, old_flags|O_NONBLOCK),这样当fd不可读或不可写的时候,read()write()不会阻塞,而是直接返回-1,errno设为EAGAIN。
  2. 设置fd标志为FD_CLOEXEC: 调用fcntl(fd, F_SETFD, FD_CLOEXEC),这样当进程调用exec()族函数前会关闭该fd。这么做是为了防止文件描述符的泄露,因为调用exec()族函数会用新程序替换掉当前进程执行的程序,进程的正文、数据、堆和栈段都会被替换,这就导致原先保存文件描述符的变量不存在了,也就无法关闭“老进程“的fd,导致文件描述符泄露。

注册信号处理函数

注册的信号有SIGTERMSIGINTSIGUSR1SIGUSR2SIGCHLDSIGQUIT六种。

int fpm_signals_init_main() /* {{{ */
{
    struct sigaction act;

    if (0 > socketpair(AF_UNIX, SOCK_STREAM, 0, sp)) {
        zlog(ZLOG_SYSERROR, "failed to init signals: socketpair()");
        return -1;
    }

    if (0 > fd_set_blocked(sp[0], 0) || 0 > fd_set_blocked(sp[1], 0)) {
        zlog(ZLOG_SYSERROR, "failed to init signals: fd_set_blocked()");
        return -1;
    }

    if (0 > fcntl(sp[0], F_SETFD, FD_CLOEXEC) || 0 > fcntl(sp[1], F_SETFD, FD_CLOEXEC)) {
        zlog(ZLOG_SYSERROR, "falied to init signals: fcntl(F_SETFD, FD_CLOEXEC)");
        return -1;
    }

    memset(&act, 0, sizeof(act));
    act.sa_handler = sig_handler;
    sigfillset(&act.sa_mask);

    if (0 > sigaction(SIGTERM,  &act, 0) ||
        0 > sigaction(SIGINT,   &act, 0) ||
        0 > sigaction(SIGUSR1,  &act, 0) ||
        0 > sigaction(SIGUSR2,  &act, 0) ||
        0 > sigaction(SIGCHLD,  &act, 0) ||
        0 > sigaction(SIGQUIT,  &act, 0)) {

        zlog(ZLOG_SYSERROR, "failed to init signals: sigaction()");
        return -1;
    }
    return 0;
}

worker进程信号初始化

worker进程信号初始化函数fpm_signals_init_child() 主要做了三件事情:

  1. 关闭unix_socket对sp
  2. 注册信号处理函数
  3. ZendVM初始化信号

关闭unix_socket对sp

这对unix_socket继承自master进程,worker进程用不到它们。

注册信号处理函数

  • SIGQUIT:处理函数为sig_soft_quit()sa_flags变量设为SA_RESTART表示信号处理函数返回后重新调用被中断的系统调用,这样worker进程正在处理中的事情不会受到影响。
  • 其他信号:处理函数为SIG_DFL,即采用默认行为。

ZendVM初始化信号

调用zend_signal_init(),这个不展开讲了。

int fpm_signals_init_child() /* {{{ */
{
    struct sigaction act, act_dfl;

    memset(&act, 0, sizeof(act));
    memset(&act_dfl, 0, sizeof(act_dfl));

    act.sa_handler = &sig_soft_quit;
    act.sa_flags |= SA_RESTART;

    act_dfl.sa_handler = SIG_DFL;

    close(sp[0]);
    close(sp[1]);

    if (0 > sigaction(SIGTERM,  &act_dfl,  0) ||
        0 > sigaction(SIGINT,   &act_dfl,  0) ||
        0 > sigaction(SIGUSR1,  &act_dfl,  0) ||
        0 > sigaction(SIGUSR2,  &act_dfl,  0) ||
        0 > sigaction(SIGCHLD,  &act_dfl,  0) ||
        0 > sigaction(SIGQUIT,  &act,      0)) {

        zlog(ZLOG_SYSERROR, "failed to init child signals: sigaction()");
        return -1;
    }

    zend_signal_init();
    return 0;
}

master进程信号处理

调用信号处理函数

master进程收到SIGUSR2信号后将回调sig_handler()进行信号处理。我们可以看到SIGUSR2被映射为2,并写入到 sp[1]

static void sig_handler(int signo) /* {{{ */
{
    static const char sig_chars[NSIG + 1] = {
        [SIGTERM] = 'T',
        [SIGINT]  = 'I',
        [SIGUSR1] = '1',
        [SIGUSR2] = '2',
        [SIGQUIT] = 'Q',
        [SIGCHLD] = 'C'
    };
    char s;
    int saved_errno;

    if (fpm_globals.parent_pid != getpid()) {
        /* prevent a signal race condition when child process
            have not set up it's own signal handler yet */
        return;
    }

    saved_errno = errno;
    s = sig_chars[signo];
    zend_quiet_write(sp[1], &s, sizeof(s));        //实际调用write()
    errno = saved_errno;
}

当往sp[1]写入数据后,sp[0]变为可读,触发事件回调fpm_got_signal()。从sp[0]读取到写入的数据 2,之后调用fpm_pctl() 来进行重启操作。

static void fpm_got_signal(struct fpm_event_s *ev, short which, void *arg) /* {{{ */
{
    char c;
    int res, ret;
    int fd = ev->fd;

    do {
        do {
            res = read(fd, &c, 1);
        } while (res == -1 && errno == EINTR);

        if (res <= 0) {
            if (res < 0 && errno != EAGAIN && errno != EWOULDBLOCK) {
                zlog(ZLOG_SYSERROR, "unable to read from the signal pipe");
            }
            return;
        }

        switch (c) {
      case 'C' :                  /* SIGCHLD */
                zlog(ZLOG_DEBUG, "received SIGCHLD");
                fpm_children_bury();
                break;  
            ......
            case '2' :                  /* SIGUSR2 */
                zlog(ZLOG_DEBUG, "received SIGUSR2");
                zlog(ZLOG_NOTICE, "Reloading in progress ...");
                fpm_pctl(FPM_PCTL_STATE_RELOADING, FPM_PCTL_ACTION_SET);
                break;
        }

        if (fpm_globals.is_child) {
            break;
        }
    } while (1);
    return;
}

切换fpm状态为reloading

由下面的fpm_pctl()代码可知,对于FPM_PCTL_ACTION_SET操作只有当fpm状态fpm_state为正常时(FPM_PCTL_STATE_NORMAL),重启操作才能进行下去。

之后将重置已发送信号(fpm_signal_sent=0),并设置fpm当前状态为FPM_PCTL_STATE_RELOADING,然后调用fpm_pctl_action_next()进行下一步操作。

void fpm_pctl(int new_state, int action) /* {{{ */
{
    switch (action) {
        case FPM_PCTL_ACTION_SET :
            if (fpm_state == new_state) { /* already in progress - just ignore duplicate signal */
                return;
            }

            switch (fpm_state) { /* check which states can be overridden */
                case FPM_PCTL_STATE_NORMAL :
                    /* 'normal' can be overridden by any other state */
                    break;
                case FPM_PCTL_STATE_RELOADING :
                    /* 'reloading' can be overridden by 'finishing' */
                    if (new_state == FPM_PCTL_STATE_FINISHING) break;
                case FPM_PCTL_STATE_FINISHING :
                    /* 'reloading' and 'finishing' can be overridden by 'terminating' */
                    if (new_state == FPM_PCTL_STATE_TERMINATING) break;
                case FPM_PCTL_STATE_TERMINATING :
                    /* nothing can override 'terminating' state */
                    zlog(ZLOG_DEBUG, "not switching to '%s' state, because already in '%s' state",
                        fpm_state_names[new_state], fpm_state_names[fpm_state]);
                    return;
            }

            fpm_signal_sent = 0;
            fpm_state = new_state;

            zlog(ZLOG_DEBUG, "switching to '%s' state", fpm_state_names[fpm_state]);
            /* fall down */

        case FPM_PCTL_ACTION_TIMEOUT :
            fpm_pctl_action_next();
            break;
        case FPM_PCTL_ACTION_LAST_CHILD_EXITED :
            fpm_pctl_action_last();
            break;

    }
}

向worker进程发送信号

此阶段可以看成是三个升级信号的发送过程:

  1. SIGQUIT: 首先发送SIGQUIT信号,worker进程收到后会进行优雅关闭,并设置一个超时时为process_control_timeout的定时器事件,关于process_control_timeout 可以看我另外一篇文章【PHP】配置文件中的超时时间解析,定时器超时后最终将调用fpm_pctl(FPM_PCTL_STATE_UNSPECIFIED, FPM_PCTL_ACTION_TIMEOUT);,从action名称可以看出是要进行超时的操作。
  2. SIGTERM:fpm_pctl()源码可知,action FPM_PCTL_ACTION_TIMEOUT 仍然调用fpm_pctl_action_next(),只不过这次SIGQUIT信号会升级为SIGTERM发送给worker进程,定时器超时时间变为1s。
  3. SIGKILL: 定时器又超时后,SIGTERM会升级为终极信号SIGKILLSIGKILL信号相比SIGTERM是不可被捕获或者忽略的,它将强行终止worker进程。
static void fpm_pctl_action_next() /* {{{ */
{
    int sig, timeout;

    if (!fpm_globals.running_children) {
        fpm_pctl_action_last();
    }

    if (fpm_signal_sent == 0) {
        if (fpm_state == FPM_PCTL_STATE_TERMINATING) {
            sig = SIGTERM;
        } else {
            sig = SIGQUIT;
        }
        timeout = fpm_global_config.process_control_timeout;
    } else {
        if (fpm_signal_sent == SIGQUIT) {
            sig = SIGTERM;
        } else {
            sig = SIGKILL;
        }
        timeout = 1;
    }

  // 实际调用kill()
    fpm_pctl_kill_all(sig);
    fpm_signal_sent = sig;
    fpm_pctl_timeout_set(timeout);
}

worker进程信号处理

worker进程主要处理master发送过来的三个信号,即SIGQUITSIGTERMSIGKILL

  • SIGQUIT:worker进程信号初始化阶段我们知道,SIGQUIT信号的回调事件是sig_soft_quit()。它首先会关闭listening_socket,并且将in_shutdown置为1,这样accept()系统调用将立即返回-1,worker进程不再接收请求,开始结束进程的操作。
static void sig_soft_quit(int signo) /* {{{ */
{
    int saved_errno = errno;

    /* closing fastcgi listening socket will force fcgi_accept() exit immediately */
    close(fpm_globals.listening_socket);
    if (0 > socket(AF_UNIX, SOCK_STREAM, 0)) {
        zlog(ZLOG_WARNING, "failed to create a new socket");
    }
  // 设置in_shutdown=1
    fpm_php_soft_quit();
    errno = saved_errno;
}

int fcgi_accept_request(fcgi_request *req)
{
    while (1) {
        if (req->fd < 0) {
            while (1) {
                if (in_shutdown) {
                    return -1;
                }
        ......
        req->fd = accept(listen_socket, (struct sockaddr *)&sa, &len);
        ......
      }
    } else {
            fcgi_close(req, 1, 1);
        }  
  }
}
  • SIGTERM: SIGTERM信号采用SIG_DFL默认处理方式,即终止进程,可以被阻塞、捕获、忽略。
  • SIGKILL: SIGKILL信号不能被捕获或者忽略,将强行终止worker进程。

master进程对worker的善后处理

worker进程的状态发生变化时,被终止或者暂停,内核会向master进程发送一个异步通知,即SIGCHLD信号,由信号处理函数fpm_got_signal()可知将执行fpm_children_bury()

下面将fpm_children_bury()的代码拆解到对应部分下。

waitpid()介绍

在这里先介绍下waitpid()是干嘛的:

当子进程结束的时候,内核会为终止子进程保存一定量的信息,这些信息至少包括进程ID、该进程的的终止状态、以及该进程使用的CPU时间总量。

一个已经终止、但是其父进程尚未对其进行善后处理(获取终止子进程的有关信息,释放它仍占用的资源)的进程会成为僵尸进程僵尸进程的进程号会被一直占用着,但是系统所能使用的进程号是有限的,所以如果有大量的僵尸进程产生,将因为没有可用的进程号而导致系统不能产生新的进程。

wait()waitpid()就可以让父进程获取到这些信息,并被内核释放掉。

// 最外层循环
while ( (pid = waitpid(-1, &status, WNOHANG | WUNTRACED)) > 0) {
    ......
}

终止状态判断

master进程通过waitpid()获取到终止的worker进程的pid 和终止状态status后,将对status进行一些判断

  1. WIFEXITED(status): 这是正常终止的子进程返回的状态。
  2. WIFSIGNALED(status): 这是异常终止子进程返回的状态,比如直接向子进程发送终止信号。通过WTERMSIG(status)来获取时子进程终止的信号编号。
  3. WIFSTOPPED(status): 这是暂停子进程返回的状态。如果fpm开启了slowlog,那么当请求时间超过request_slowlog_timeout后,master进程的心跳检测模块会给worker进程发送SIGSTOP信号,worker进程被暂停,状态发生变化,内核向master进程发送SIGCHLD信号,之后就会执行到这里。最后将调用fpm_php_trace()函数来打印导致请求slow的堆栈信息。
if (WIFEXITED(status)) {

    snprintf(buf, sizeof(buf), "with code %d", WEXITSTATUS(status));

    /* if it's been killed because of dynamic process management
        * don't restart it automaticaly
        */
    if (child && child->idle_kill) {
        restart_child = 0;
    }

  // 调用fpm_php_trace()
    if (WEXITSTATUS(status) != FPM_EXIT_OK) {
        severity = ZLOG_WARNING;
    }

} else if (WIFSIGNALED(status)) {
    const char *signame = fpm_signal_names[WTERMSIG(status)];
    const char *have_core = WCOREDUMP(status) ? " - core dumped" : "";

    if (signame == NULL) {
        signame = "";
    }

    snprintf(buf, sizeof(buf), "on signal %d (%s%s)", WTERMSIG(status), signame, have_core);

    /* if it's been killed because of dynamic process management
        * don't restart it automaticaly
        */
    if (child && child->idle_kill && WTERMSIG(status) == SIGQUIT) {
        restart_child = 0;
    }

    if (WTERMSIG(status) != SIGQUIT) { /* possible request loss */
        severity = ZLOG_WARNING;
    }
} else if (WIFSTOPPED(status)) {

    zlog(ZLOG_NOTICE, "child %d stopped for tracing", (int) pid);

    if (child && child->tracer) {
        child->tracer(child);
    }

    continue;
}

善后worker进程

child = fpm_child_find(pid);

if (child) {
    struct fpm_worker_pool_s *wp = child->wp;
    struct timeval tv1, tv2;

  // 资源释放  
    fpm_child_unlink(child);
    fpm_scoreboard_proc_free(wp->scoreboard, child->scoreboard_i);
    fpm_clock_get(&tv1);
    timersub(&tv1, &child->started, &tv2);

    ......

  // 关闭标准输出、标准错误
    fpm_child_close(child, 1 /* in event_loop */);
  
  // 在后文中详解
    fpm_pctl_child_exited();

    ......
    
} else {
    zlog(ZLOG_ALERT, "oops, unknown child (%d) exited %s. Please open a bug report (https://bugs.php.net).", pid, buf);
}

fpm_pctl_child_exited()源码可知,如果这是最后一个worker进程的终止,将调用fpm_pctl(FPM_PCTL_STATE_UNSPECIFIED, FPM_PCTL_ACTION_LAST_CHILD_EXITED);

int fpm_pctl_child_exited() /* {{{ */
{
    if (fpm_state == FPM_PCTL_STATE_NORMAL) {
        return 0;
    }

    if (!fpm_globals.running_children) {
        fpm_pctl(FPM_PCTL_STATE_UNSPECIFIED, FPM_PCTL_ACTION_LAST_CHILD_EXITED);
    }
    return 0;
}

继续追踪源码会发现,在重启操作中最后会调用fpm_pctl_exec()

execvp()函数将重新执行php-fpm程序,当前进程的正文、数据、堆和栈段都将被替换掉。

static void fpm_pctl_exec() /* {{{ */
{
    fpm_cleanups_run(FPM_CLEANUP_PARENT_EXEC);
    execvp(saved_argv[0], saved_argv);
  // 正常情况不会走到这里
    zlog(ZLOG_SYSERROR, "failed to reload: execvp() failed");
    exit(FPM_EXIT_SOFTWARE);
}

至此,PHP-FPM就完成了重启。

三、重启日志

PHP打印了很多Debug日志,大家可以在php-fpm.conf中将log_level选项设置为debug来开启。下面是debug日志的例子,可以对照着理解下上文内容。

[16-Jul-2019 16:51:40.248439] DEBUG: pid 36507, fpm_got_signal(), line 110: received SIGUSR2
[16-Jul-2019 16:51:40.248711] NOTICE: pid 36507, fpm_got_signal(), line 111: Reloading in progress ...
[16-Jul-2019 16:51:40.248909] DEBUG: pid 36507, fpm_pctl(), line 229: switching to 'reloading' state
[16-Jul-2019 16:51:40.249112] DEBUG: pid 36507, fpm_pctl_kill_all(), line 157: [pool www] sending signal 3 SIGQUIT to child 36508
[16-Jul-2019 16:51:40.249360] DEBUG: pid 36507, fpm_pctl_kill_all(), line 166: 1 child(ren) still alive
[16-Jul-2019 16:51:40.249624] DEBUG: pid 36507, fpm_event_loop(), line 417: event module triggered 1 events
[16-Jul-2019 16:51:40.256626] DEBUG: pid 36507, fpm_got_signal(), line 74: received SIGCHLD
[16-Jul-2019 16:51:40.256968] DEBUG: pid 36507, fpm_children_bury(), line 259: [pool www] child 36508 exited with code 0 after 16.412179 seconds from start
[16-Jul-2019 16:51:40.257411] NOTICE: pid 36507, fpm_pctl_exec(), line 96: reloading: execvp("/usr/local/Cellar/php/7.3.7/sbin/php-fpm", {"/usr/local/Cellar/php/7.3.7/sbin/php-fpm", "--fpm-config=/usr/local/etc/php/7.3.7/php-fpm.conf", "--pid=/usr/local/Cellar/php/7.3.7/var/run/php-fpm.pid"})
[16-Jul-2019 16:51:40.319184] DEBUG: pid 36507, fpm_unix_init_main(), line 518: The calling process is waiting for the master process to ping via fd=4
[16-Jul-2019 16:51:40.321064] DEBUG: pid 36699, fpm_scoreboard_init_main(), line 38: got clock tick '100'
[16-Jul-2019 16:51:40.321588] NOTICE: pid 36699, fpm_sockets_init_main(), line 417: using inherited socket fd=7, "127.0.0.1:9001"
[16-Jul-2019 16:51:40.321588] NOTICE: pid 36699, fpm_sockets_init_main(), line 417: using inherited socket fd=7, "127.0.0.1:9001"
[16-Jul-2019 16:51:40.321782] DEBUG: pid 36699, fpm_socket_af_inet_socket_by_addr(), line 290: Found address for 127.0.0.1, socket opened on 127.0.0.1
[16-Jul-2019 16:51:40.321969] DEBUG: pid 36699, fpm_event_init_main(), line 335: event module is kqueue and 1 fds have been reserved
[16-Jul-2019 16:51:40.322374] NOTICE: pid 36699, fpm_init(), line 83: fpm is running, pid 36699
[16-Jul-2019 16:51:40.322505] DEBUG: pid 36699, main(), line 1858: Sending "1" (OK) to parent via fd=5
[16-Jul-2019 16:51:40.322648] DEBUG: pid 36507, fpm_unix_init_main(), line 537: I received a valid acknowledge from the master process, I can exit without error
[16-Jul-2019 16:51:40.322977] DEBUG: pid 36699, fpm_children_make(), line 428: [pool www] child 36702 started
[16-Jul-2019 16:51:40.323302] DEBUG: pid 36699, fpm_event_loop(), line 364: 1296 bytes have been reserved in SHM
[16-Jul-2019 16:51:40.323498] NOTICE: pid 36699, fpm_event_loop(), line 365: ready to handle connections

本文来自:Segmentfault

感谢作者:Uchiha_Ponny

查看原文:【PHP-FPM】重启过程源码详解

186 次点击  
加入收藏 微博
暂无回复
添加一条新回复 (您需要 登录 后才能回复 没有账号 ?)
  • 请尽量让自己的回复能够对别人有帮助
  • 支持 Markdown 格式, **粗体**、~~删除线~~、`单行代码`
  • 支持 @ 本站用户;支持表情(输入 : 提示),见 Emoji cheat sheet